ON INEQUALITY Rp < R OF THE PEDAL TRIANGLE

نویسنده

  • JIAN LIU
چکیده

In this paper we give a simple proof of the pedal triangle inequality Rp < R , where R is the circumradius of a triangle and Rp is the circumradius of the pedal triangle of an interior point with respect to this triangle. We also establish a stronger result and a refinement of inequality Rp < R . Some related interesting conjectures checked by the computer are put forward. Mathematics subject classification (2010): 51M16.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the metric triangle inequality

A non-contradictible axiomatic theory is constructed under the local reversibility of the metric triangle inequality. The obtained notion includes the metric spaces as particular cases and the generated metric topology is T$_{1}$-separated and generally, non-Hausdorff.

متن کامل

Dual Billiards, Fagnano Orbits, and Regular Polygons

In this article we consider the dual version of two results on polygonal billiards. We begin by describing these original results. The first result is about the dynamics of the so-called pedal map related to billiards in a triangle P . The three altitudes of P intersect the opposite sides (or their extensions) in three points called the feet. These three points form the vertices of a new triang...

متن کامل

Reckoning the moment of reckoning in spontaneous voluntary movement.

In everyday life, movements are sometimes triggered by external sensory stimuli, like when the traffic light ahead turns from green to red and you move your foot from the gas pedal to the brake pedal in response. But many of our voluntary movements are spontaneous, meaning that they are not tied to any recent stimulus in the current sensory environment. This capacity affords us what Gold and Sh...

متن کامل

A Stronger Triangle Inequality for Neutral Geometry

Bailey and Bannister [College Math. Journal, 28 (1997) 182–186] proved that a stronger triangle inequality holds in the Euclidean plane for all triangles having largest angle less than arctan( 7 ) ≈ 74◦. We use hyperbolic trigonometry to show that a stronger triangle inequality holds in the hyperbolic plane for all triangles having largest angle less than or equal to 65.87◦ .

متن کامل

A Generalized Wirtinger’s Inequality with Applications to a Class of Ordinary Differential Equations

We first prove a generalized Wirtinger’s inequality. Then, applying the inequality, we study estimates for lower bounds of periods of periodic solutions for a class of delay differential equations ẋ t −∑nk 1f x t − kr , and ẋ t − ∑n k 1g t, x t − ks , where x ∈ R, f ∈ C R,R , and g ∈ C R×Rp,Rp and r > 0, s > 0 are two given constants. Under some suitable conditions on f and g, lower bounds of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013